


ASR-Driven Binary Mask Estimation using Spectral Priors William Hartmann and Eric Fosler-Lussier (hartmann.59@osu.edu; fosler@cse.ohio-state.edu) Department of Computer Science and Engineering, The Ohio State University

- computing standard ASR features.
- (Wang, 2005).
- level features.
- (SNR).

- unmasked.

$$M(f,t) = \begin{cases} 1 & \frac{|S(f,t)|^2}{|N(f,t)|^2} > \theta\\ 0 & \text{otherwise} \end{cases}$$

- IBM.
- **Clean Speech**

- They represent a lower bound for word error rate.
- Features are mean-subtracted, variance normalized PLPs.

System	Car	Babble	Restaurant	Street	Airport	Train	Avg				
Baseline	27.3	34.3	36.7	39.3	35.0	42.0	35.8				
1-Best Estimate	25.2	32.5	35.5	37.7	33.4	39.7	34.0				
100-Best Estimate	23.9	30.7	34.3	35.4	33.8	36.6	32.5				
Oracle Masks											
Ideal Binary Mask	17.6	15.8	15.4	19.5	16.2	19.6	17.4				
Clean Speech Oracle	19.0	20.1	24.1	20.5	22.6	21.6	21.3				
100-Best Oracle	20.5	25.6	28.1	29.9	27.3	32.1	27.3				

Word error rate on the Aurora4 corpus. Lower numbers are better.

System	Car	Babble	Restaurant	Street	Airport	Train	Avg
Hendriks et al.	8.3	2.8	2.3	6.7	2.4	5.7	4.7
100-Best Estimate	10.9	3.1	2.3	7.1	2.8	6.0	5.4

SNR improvement on Aurora4. Comparison system is a standard PSD-based speech enhancement algorithm (Hendriks et al., 2010). Greater numbers are better.

- interfering noise.
- enhancement technique.
- Noisy ASR results can drive the speech enhancement process.

Proceedings of ICASSP, 2010, pp 4266-4269.

- 2002. Available: http://htk.eng.cam.ac.uk/
- 181-197. Kluwer Academic, Norwell MA, 2005.

Experimental Results

• Estimated masks are generated from the candidate models collected from N-best lists. 1-Best refers to the single best output from the ASR system.

• 100-Best refers to the top 100 hypotheses from the ASR system.

• Oracle masks are generated by selecting the best model from a set of candidate models.

• Results are obtained using an HMM-based recognizer built with HTK (Young et al., 2002).

• We also report speech enhancement results in terms of SNR improvement.

• Results are similar to a standard PSD-based enhancement system.

• Our system uses no knowledge regarding the underlying interference.

Conclusions

• A binary mask, similar to the IBM, defined on the underlying linguistic content of the signal can produce significant WER improvements over an unenhanced baseline while ignoring the

• SNR improvements using the ASR-Driven binary mask are comparable to a standard speech

• Future work will seek to improve the subphonetic model selection from the candidate models.

References

• Hendriks et al., MMSE-based noise PSD tracking with low complexity, in

• S. Young et al., The HTK Book. Cambridge University Publishing Department,

• D.L. Wang, "On ideal binary mask as the computational goal of auditory scene analysis," in Speech separation by humans and machines, P. Divenyi, Ed., pp.