automatic speech recognition.
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Improved Model Selection for the ASR-Driven Binary Mask

Introduction
‘We use a binary mask-based approach for robust

-Our ASR-Driven mask places the focus on the underlying

linguistic content of the signal.

‘We propose a linear sequence model based estimation

technique.

-Our method outperforms frame-independent estimation

methods on the Aurora4 dataset.

Traditional Approaches

Traditional approaches first estimate the noise signal
from the mixture.
-An estimate of the speech is obtained by subtracting

away the noise estimate.
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Speech Estimate

*The two estimates are directly compared to produce the

estimated binary mask.

*The goal, the Ideal Binary Mask, is defined by comparing

the true speech and noise signals.
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The ASR-Driven Binary Mask

- Training sentences are force-aligned to produce state level transcripts.

-An energy prior is learned for each possible state label (triphone states in our setup).
*The background prior assumes little speech energy in low energy frames and high
speech energy in high energy frames.

energy models to the background prior.

speech signal.
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Frame-Based Mask Estimation Sequence-Based Mask Estimation

-Candidate masks are generated for each frame from a lattice generated from a
baseline recognizer.

A multilayer perceptron (MLP) is trained for each frequency channel.

-The candidate mask that most closely matches the MLP estimate is chosen.

*The model is trained using the structured perceptron. vk

frame masks (20,000 x 27264 possible labels).
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*The oracle ASR-Driven mask is generated by comparing the prior

*The energy priors are selected by force-aligning the transcription to the
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‘We use a linear chain sequence model defined as arg manL L g fr(Yis Yit1,T)

Our label space is the cross product of triphone states and the number of possible

S T m ‘ 1 L m 14 ey *Training and decoding with this number of labels is unfeasible.

Cje e . WI ’ | u.-’ C' i ,‘lh..‘ r'-|1;-'|"f:” *We factor the label space and define feature functions based on properties of the labels.
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Results and Conclusions

-The proposed sequence model based approach (Sequence Model ‘We have proposed a sequence based estimation method that
ADBM) outperforms all tested comparisons.

| significantly outperforms frame based estimation methods.
W Baseline LP-Based ADBM -The baseline ASR system is used to provide hypotheses for
SS+PRM-Based IBM Ml Sequence Model ADBM € baseline ystem IS used 1o provide nypothese
36— mask estimation.

§ s By factoring the label space, we are able to overcome the
s difficulties associated with our large label space.

s -Our approach should scale to alternative, context-dependent
g 315 mask estimation methods.
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