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Abstract—Recently, much work has been devoted to the com-
putation of binary masks for speech segregation. Conventional
wisdom in the field of ASR holds that these binary masks cannot
be used directly; the missing energy significantly affects the
calculation of the cepstral features commonly used in ASR. We
show that this commonly held belief may be a misconception;
we demonstrate the effectiveness of directly using the masked
data on both a small and large vocabulary dataset. In fact,
this approach, which we term the direct masking approach,
performs comparably to two previously proposed missing feature
techniques. We also investigate the reasons why other researchers
may have not come to this conclusion; variance normalization of
the features is a significant factor in performance. This work
suggests a much better baseline than unenhanced speech for
future work in missing feature ASR.

I. INTRODUCTION

BASELINE systems provide a benchmark for judging
advances in a field. New methods and techniques are

considered effective when their performance exceeds the base-
line. As a field progresses, baselines slowly improve to reflect
the advances that have been made. However, there comes a
time to reevaluate the baseline altogether. For missing feature
techniques designed to provide robustness in automatic speech
recognition (ASR), systems typically have been compared
against unmodified, non-robust features. In this work, we show
that a stronger baseline is available that is comparable to or
outperforms standard missing feature techniques. The paper
also explores explanations for why this stronger baseline has
been overlooked in the literature.

ASR has long been known to suffer from the presence of
background noise [1]. Many techniques have been developed
that attempt to address this issue. Model-based techniques
incorporate noise models into recognition [2]; these techniques
typically require some statistical knowledge about the noise
source and may require modifications to the recognizer. Noise-
robust features, on the other hand, attempt to maintain in-
variance of the calculated features regardless of the noise
condition [3]. Speech enhancement instead attempts to remove
the noise from the signal prior to feature calculation. These
methods typically do not require modifications to the standard
recognition system.
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Traditional speech enhancement methods, such as spectral
subtraction [4], attempt to modify frame-level noisy speech
spectra to make them closer to those of clean speech. In this
work, we focus on the Computational Auditory Scene Analysis
(CASA) based approach to speech enhancement. CASA, as we
consider it in this paper, refers to sound segregation based on
the perceptual process of auditory scene analysis proposed by
Bregman [5]. It typically operates on a time-frequency (T-F)
representation of the input, and produces an output that can
be viewed as a binary T-F mask.

One proposed goal of CASA is the ideal binary mask
(IBM) [6]. Conceptually, the IBM is very simple. A signal
is first transformed into a spectrotemporal representation; the
spectrogram and cochleagram are two common examples.
Each pixel of this two-dimensional image of the signal, or T-F
unit, represents the amount of energy at a particular frequency
and time. The IBM is the binary segregation of these pixels
into two groups; one containing energy mostly from a target
source and one containing energy mostly from the interference.
Formally, we can define the IBM as

M(ω, t) =

{
1 |S(ω,t)|2

|N(ω,t)|2 > θ

0 otherwise
(1)

where ω is a frequency band and t represents a particular time
frame. S(ω, t) and N(ω, t) represent the amount of energy at a
T-F unit for the clean speech and interfering noise respectively.
Figure 1 provides an example. The threshold θ is typically set
to 1, corresponding to a local SNR of 0 dB. We note that other
studies have found improved performance using alternative
thresholds [7], [8].

The IBM segregates the signal where a value of unity
indicates that the corresponding T-F unit is grouped into the
segregated target, and a value of zero indicates that the unit
is considered part of the interference and hence removed [9]–
[11]. We call T-F units with value 1 unmasked, and those
with value 0 masked. Approaching the problem in this manner
reduces speech enhancement to a binary classification task
[6]. Previous studies have shown that processing noisy speech
using an IBM can significantly improve speech intelligibility
for humans (e.g. [12]).

For ASR, conventional wisdom in the field holds that
the IBM cannot be used directly as the missing energy in
the masked regions significantly affects the calculation of
cepstral features. Directly using a mask refers to multiplying a
spectrotemporal representation of the signal by the mask and
then resynthesizing the waveform or calculating features from
the masked signal. Based on this conventional wisdom, many
techniques have been proposed to compensate for this missing
energy when incorporating the IBM or related binary masks
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(a) Clean Speech

(b) Speech Mixed with Factory Noise

(c) Ideal Binary Mask

Fig. 1. Ideal Binary Mask example. The top panel is a cochleagram
representation of clean speech. The middle panel is that same speech mixed
with factory noise at an SNR of 10 dB. The bottom panel is the IBM generated
from the mixed speech.

in ASR [13]–[15]. In this work, we will demonstrate that this
conventional wisdom may, in fact, be a misconception. We
extend our previous work in [16], which showed the IBM
could be used directly in ASR for large-vocabulary tasks, in
several ways. We present experiments on a small vocabulary
dataset to show the effect is not due entirely to the strength
of the language model. Our results show that directly using
the IBM, which we term the direct masking approach1 as we
perform no reconstruction before resynthesis, not only works,
but outperforms two main methods originally proposed to
overcome the supposed inadequacies of the direct masking
approach. In addition, we explain the likely cause for the
original misconception–the lack of variance normalization in
the features used. Results are also shown using estimated
masks to demonstrate the conclusions hold in more realistic
environments.

The rest of the paper is organized as follows. Section II
presents background on the research incorporating the IBM in
ASR. We describe in more detail two common approaches to
utilizing the IBM in ASR and the direct masking approach
in Section III. Our experiments on both small and large
vocabulary tasks in Section IV show that using the IBM
directly outperforms these two approaches in many cases. An
analysis of why our results may have differed from previous

1Previous work has referred to this approach as zero-imputation [17]. We
believe the term direct masking better distinguishes the approach from other
techniques as no explicit compensation for the missing energy is made.

work and our final conclusions are presented in Sections V
and VI respectively.

II. BACKGROUND

Once speech has been segregated using a binary mask,
the question of how to perform ASR on the segregated
speech still remains. Probably the first study to address this
question is by Cooke et al. [18] who noted that standard ASR
techniques had to be adapted to deal with occluded speech
in masked T-F units. By treating masked speech as missing
during classification, they adapted missing feature techniques
in machine learning (e.g. [19]) to perform HMM based ASR,
where the key idea is to marginalize over missing or unreliable
features in probability calculation (see also [20]). Early studies
demonstrated the effectiveness of marginalizing missing data
or features by removing feature components either in the
spectral domain [18], [20] or in the cepstral domain [18],
which is far superior to recognizing noisy speech without
processing. Obviously, to apply missing feature recognition
in practice requires a missing feature detector that provides
binary labels on feature components such as T-F units, which
is considered the task of speech segregation. Since speech
segregation algorithms operate in the time-frequency (spectral)
domain, not in the cepstral domain, missing feature recognition
has focused on coupling with HMM recognizers using spectral
features [13].

It is well known that, for ASR, spectral or T-F features are
not nearly as effective as cepstral features [21]. The success
of marginalization has been mainly demonstrated on small-
vocabulary tasks, such as digits or phones, and its scalability to
larger vocabularies is questionable [22]. Treating marginaliza-
tion as classifier compensation, Raj et al. [14] proposes feature
compensation techniques by reconstructing missing features in
the spectral domain based on a prior model of speech. With
missing features reconstructed, a whole spectral vector can
then be converted to the cepstral domain where conventional
ASR is performed. A later study by Srinivasan et al. [23]
additionally converts spectral uncertainty in mask estimation
to the cepstral domain for improved ASR. Others advocate
ratio masks, akin to Wiener filtering in speech enhancement,
in place of binary masks in order to couple with cepstral
features [22], [24]. Soft-masking [25], [26] takes a similar
direction; the mask is altered by either the estimated energy
or the uncertainty in the estimate. Ratio masks, soft masks,
and reconstruction are all similar approaches in the sense that
they use a real-value mask instead of a binary mask in the
final enhancement.

Reconstruction of unreliable features from the reliable por-
tion of the signal is an inference that is inherently error-
prone. It hence seems logical to ask the question: What if no
reconstruction is attempted? We have found only one study
that explored the results of this simple direct masking ap-
proach. Cooke et al. [17] found that not modifying the masked
regions performed significantly worse than any other approach
when using spectral features. In addition, there are reasons
to doubt the utility of the direct masking approach. First,
conventional wisdom would suggest that something must be
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done to holes (zeros) in a spectrogram or cochleagram created
by binary masking [18]. This conventional wisdom is well
founded when recognition is performed in the spectral domain
as marginalization is a theoretically optimal technique. Second,
it is not unreasonable to think that reconstruction, despite its
approximate nature, should beat no reconstruction at all. This
reasoning is encouraged by generally good results obtained
from reconstruction research in comparison to recognition
of noisy speech or some enhanced version via e.g. spectral
subtraction [14], [23], [27]. Subsequent studies likely either
ignored this approach based on the results in [17] or obtained
poor results and declined to report them. Nonetheless, one
would think that the condition ought to be included as a
baseline in comparisons. We will make those comparisons
in this study and present a likely reason for its absence in
previous work.

III. COMMON APPROACHES

In the previous section, we gave a brief overview of the
research concerning the incorporation of binary masks in ASR.
We now present a more detailed description of marginalization
and reconstruction approaches. Both techniques are examples
of missing feature ASR. We separate the two techniques by
how they handle missing features; for a more detailed review,
see [7]. We also discuss the simplest method of incorporating
the binary mask, directly using the masked signal.

A. Marginalization-Based ASR

Originally proposed by Cooke et al., marginalization [13]
was the first approach to address the issue of incorporating
binary masks in ASR. While several variations were described
in [13], we will focus here on the best performing method–
bounded marginalization. Features are partitioned into reliable
and unreliable ones based on a binary mask. Masked T-F
units correspond to unreliable and unmasked units to reliable
features. The marginalization-based speech recognizer is a
modified HMM-GMM based speech recognizer that treats
these masked and unmasked units in separate ways.

In a typical HMM based recognizer, every state is modeled
by a GMM. The likelihood of a feature vector X given a
particular state Qi can be obtained by evaluating p(X|Qi).
By separating the feature vector into reliable and unreliable
components, the evaluation becomes

p(X|Qi) =

∫
p(Xr, Xu|Qi)dXu (2)

where we integrate over (i.e. marginalize) the possible values
of Xu. As we are using a GMM with diagonal covariance for
modeling, this becomes

p(X|Qi) =

M∑
c=1

p(c|Qi)p(Xr|c,Qi)

∫
p(Xu|c,Qi)dXu (3)

where c is a particular Gaussian and M is the number of
Gaussians in the GMM. The assumption Xr and Xu are
independent given c is implicitly made. While this is not true

in practice, it follows from the use of a diagonal covariance
matrix in the Gaussians.

Just as we partitioned the feature vector into reliable and
unreliable portions, we can partition the means and variances
of each Gaussian. We can then evaluate p(Xr|c,Qi) by
evaluating the Gaussian only over the reliable dimensions. If
we do not assume anything about the unreliable data, then the
integral evaluates to one. However, we can at least determine
bounds of the true feature based on the unreliable vector.
Assuming X represents speech energy and we ignore phase
interactions, then the true speech cannot have negative energy
or more energy than in Xu. Note that while this assumption
can sometimes be violated due to phase interactions, this effect
is commonly ignored in missing data literature. The integral
can then be evaluated using these bounds for a more accurate
result.

Assuming that a given binary mask is accurate, the
marginalization-based recognizer utilizes the available infor-
mation from all the T-F units. Reliable units are treated in
the standard way and unreliable features provide bounds on
marginalization. On small vocabulary tasks such as TIDigits
[28], the marginalization approach performs remarkably well.
However, performance on larger vocabulary systems degrades
significantly [14], [22]. A likely cause is the use of spectral
features instead of the cepstral features which are known to
perform better in ASR [21]. Methods that allowed for the
calculation of cepstral features were needed to further increase
performance, at least for larger vocabularies.

B. Reconstruction-Based ASR

One method that allows for the calculation of cepstral
features is the estimation or reconstruction of missing T-F
units. If the missing T-F units can be reconstructed, then
the zeros or holes in the spectral representation no longer
present a problem for cepstral feature calculation. The first
comprehensive study of feature reconstruction was presented
by Raj et al. [14].

It was clearly shown that this method only provided im-
provements over marginalization when using cepstral features.
If instead the recognition was performed in the spectral do-
main, the reconstructed features performed worse. The results
also held over larger vocabulary tasks. One benefit of this
technique is that it does not require any modification to a
standard recognizer.

Many specific techniques for performing the reconstruction
have been explored [14], [15], [29]. We will present a tech-
nique that has been previously shown to improve results over
a baseline system [23]. A comparison between this method
and directly using the IBM will allow us to determine if
reconstruction is always the preferred approach. We note that
while the reconstruction approach in [23] is similar to the
cluster-based approach proposed on [14], it does not make
use of boundary information when calculating the posterior
probability for each Gaussian component.

As with marginalization, a binary mask is used to partition
the noisy speech vector Y into a reliable set Yr and an
unreliable set Yu where Y = Yr ∪ Yu and Yr ∩ Yu = Ø.
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Given Y , we want to estimate the true spectral vector X̂ for
the clean speech.

Assume Xr = Yr. In order to estimate Xu, a speech
prior is used [14]. The speech prior, consisting of spectral
features instead of the cepstral features eventually used for
recognition, is modeled by a GMM. Note that while this
approach can use full covariance matrices, we use diagonal
covariance matrices in our experiments. Just as we used the
binary mask to partition the spectral vector, we can also use
it to partition the mean and covariance of each mixture.

µc =

[
µr,c

µu,c

]
Σc =

[
Σrr,c Σru,c

Σur,c Σuu,c

]
(4)

Ideally we would select the Gaussian that generated the
spectral vector for estimation. Since we cannot identify the
specific Gaussian, the estimate is the weighted sum of the
estimates from each Gaussian.

X̂u =

M∑
c=1

p(c|Xr)X̂u,c (5)

where M is the number of Gaussians and X̂u,c is the expected
value of X given the cth Gaussian. To estimate p(c|Xr), the
marginal distribution p(Xr|c) = N(Xr;µr,c,Σrr,c) is used
[23]. Finally, we compute the expected value of Xu given the
cth Gaussian by

X̂u,c = µu,c + Σur,cΣ
−1
rr,c(Xr − µr,c). (6)

The unreliable portion of the spectral vector is then replaced
by the estimate X̂u and cepstral features are computed from
the reconstructed spectrogram. If the estimate X̂u exceeds
the original value Yu, then the original value is kept instead.
Again, while this formulation can make use of a prior using
full covariance matrices [14], our experiments, as in our
previous work [16], use diagonal covariance matrices. The use
of diagonal covariance matrices limits the amount of cross-
channel interaction that can be leveraged during reconstruc-
tion.

Given that this approach allows for the calculation of
cepstral features, performance is expected to scale to any size
vocabulary. As methods for improving reconstruction further
develop (e.g. [27], [30]), ASR results should also improve.
While all of these techniques allow for the incorporation of a
binary mask in ASR and show strong improvements over the
baseline of recognizing noisy speech directly, they began with
the implicit assumption that a binary mask cannot be used
directly in ASR.

C. Direct Masking Approach

Both of the previously mentioned approaches start from
the same point. Given a binary mask, estimated or ideal,
they mask the signal in the spectral domain. From this point,
marginalization marginalizes over the masked regions and
reconstruction estimates the original signal in the masked
regions. However, there is a simple third approach that treats
the masked regions as having zero energy. The direct masking
approach begins from the same point as the other two methods,

but makes no attempt to compensate for the masked regions.
Other work has referred to it as zero-imputation [17], but we
feel the term direct masking better captures the distinction
between this approach and the previous two as no actual
imputation or marginalization takes place.

Given a computed binary mask in a spectral domain, we
multiply the mask by the representation of the signal in that
same domain. From the masked spectral representation of
the speech, we can either calculate features or resynthesize a
waveform signal. In our study, we resynthesize the waveform
signal prior to calculating features, but directly calculating
features from the masked spectral representation does not
significantly change the results. Resynthesizing the waveform
also allows mask estimation and feature calculation to be done
in different signal representations.

The difference between this method and the previous two
approaches is that no attempt is made to compensate the
signal, features, or recognition system for the artificial zeros
introduced in the spectral domain. One possible issue is that
many features require a log operation and the log of zero
is undefined. However, the artificial zeros are typically not a
problem because a small amount of dither or noise is added
to the signal before the log operation is performed in standard
MFCC and PLP calculation software. Alternatively, a value
other than 0 can be used for masked units in the binary mask.
Small values produce similar results to using a value of 0 when
using ideal binary masks, however, as will be shown in the next
section, nonzero values for the masked units are essential for
improved performance when using estimated masks.

Outside of Cooke et al. [17], we have been unable to find
a study using this simple approach. The likely cause is that
results were very poor when using this approach in [17]. Since
that study, the conventional wisdom has been that this direct
masking approach does not work. Given this assumption,
much investigation has been made into alternative methods
of utilizing the binary mask in ASR. We examine the validity
of this assumption in the next section.

IV. RE-EVALUATION EXPERIMENTS

Our experiments parallel the research described in the
previous section. We will compare the results of bounded
marginalization and spectral reconstruction to the direct mask-
ing approach on both a small and large vocabulary dataset. The
small vocabulary dataset, TIDigits [28], was used in Cooke
et al. [13]. Since the strength of the spectral reconstruction
technique over marginalization was seen on larger datasets, we
will focus on spectral reconstruction for the large vocabulary
dataset, Aurora4 [31]. Our recognition systems are similar to
the ML-trained systems used in [13], [14], [23]. We acknowl-
edge that our baseline results are not state of the art, but our
goal was to have a fair comparison to the previously discussed
studies.

A. TIDigits

The TIDigits corpus [28] consists of connected digit utter-
ances. It has been widely used for speaker independent ASR
studies [13], [32], [33]. As in previous studies, we use the male
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and female subsets of the corpus. The training set consists of
8623 utterances spoken by 55 male and 57 female speakers.
The test set consists of 8700 utterances by a different set of
56 male and 57 female speakers, making the task speaker
and gender independent. Note that, unlike the original study
on missing feature recognition by Cooke et al. [13], we use
the full test set to evaluate different ASR strategies. The
direct masking approach is compared with marginalization and
reconstruction based missing data approaches.

Before presenting our results, we first describe the features
and models used. Marginalization based recognition is typ-
ically performed in the T-F domain. Since features in the
T-F domain can be defined in multiple ways, we choose
5 more commonly used feature representations to evaluate
marginalization. They are as follows:

• Cochleagram: Cochleagram is a popular feature rep-
resentation in CASA that has been widely used for
IBM estimation and other purposes [34]. To generate
cochleagram based features, the signal is first passed
through a 64 channel gammatone filterbank to perform
T-F decomposition [34] (see Ch. 1). The channel center
frequencies are uniformly spaced from 50 Hz to 8000
Hz in the ERB-rate scale. The output at each channel
is then windowed using a 20 msec rectangular window
with a 10 msec overlap (this corresponds to a frame
rate of 100 Hz). The energy within each window is
finally compressed using a log operation to obtain the
cochleagram based feature at each T-F unit. In order to
bound the feature values from below by 0, the energy
values are incremented by 1 before compression.

• Rate64: The Rate64 features are obtained in a similar
fashion. After decomposing the signal using a 64-channel
gammatone filterbank, the instantaneous Hilbert envelope
is extracted at the output of each channel. The envelope
is then smoothed using a first-order filter with a time
constant of 8 msec and downsampled to 100 Hz to obtain
the features. Rate64 features are used in [13]. We use the
CASA Toolkit [35] to extract this feature.

• Cubic compressed Rate64 (CRate64): This feature is
similar to Rate64. After the initial T-F decomposition, the
Hilbert envelope at each channel is directly downsampled
to 100 Hz without smoothing, followed by a cubic
root compression operation. Cubic compressed ratemap
features are used in [33]. Smoothed versions have also
been used in other studies [25], [32].

• Cubic compressed Rate64 with delta (CRate64 D): Stud-
ies in marginalization-based ASR have shown that adding
delta components (temporal derivatives) can be useful in
improving ASR performance [25], [36]. Therefore, as a
fourth feature, we augment CRate64 features with their
temporal derivatives to obtain CRate64 D features. We
chose CRate64 because it produced the best performance
on a smaller development set of 240 utterances.

• Spectrogram: All the above feature representations use a
non-linear frequency axis. As a fifth feature, we use the
spectrogram representation that has a linear frequency
axis. Spectrogram features are obtained by first trans-

forming the time-domain signal to the spectral domain
using the FFT. The frame rate is set to 10 msec and the
window size to 20 msec. A Hamming window is used,
as is commonly done. The energy (squared amplitude)
within each T-F unit is finally compressed using the log
operator, as in the case of cochleagram features, to obtain
a 160 dimensional feature representation at each time
frame. Spectrogram based features are used in [22]. We
did not add delta components since the performance with
delta components was found to be comparable to those
without them, when tested on the smaller development
set.

For the direct masking and reconstruction based approaches,
mean and variance normalized perceptual linear predictive
(PLP) cepstral coefficients are extracted from the segregated
target signal to perform recognition. A 39-dimensional feature
representation that consists of 13 static coefficients along with
its delta and acceleration coefficients are used. Segregation
is performed either in the linear frequency domain using
spectrogram features, or the non-linear frequency domain
using cochleagram features. When using the spectrogram
representation, the target is resynthesized from the mixture
using the inverse DFT and the overlap-add method. Before
applying the inverse DFT, the unreliable (masked) values of
the spectrogram, as defined by the IBM, are set to 0 in the
direct masking approach. In the reconstruction based approach,
they are estimated using the method described in the previous
section. A 1024-component, GMM-based speech prior model
is trained using the training set of the TIDigits corpus for
this purpose. When using the cochleagram representation,
the target signal is resynthesized from the mixture using the
method described in [34] (see Section 1.3.6), which is based
on an approach introduced by Weintraub [37]. For the direct
masking approach, the IBM is used directly to segregate
the target speech. For the reconstruction based approach,
masked T-F units of a cochleagram are first reconstructed. The
reconstructed feature value in each T-F unit is then used to
determine the percentage of target speech energy with respect
to the mixture energy within the unit. Together with the 1s in
the IBM, this defines a ratio mask for the mixture signal which
is then used to resynthesize the target [34], [37]. Unlike the
spectrogram, resynthesis in the cochleagram domain is defined
in terms of the original signal and a ratio mask.

In all three approaches, the IBM defined using a local SNR
criterion of 0 dB is used to identify the masked and unmasked
regions in the T-F representation of a noisy utterance [6].2 The
0 dB criterion is commonly used in CASA to define binary
masks. The IBM is defined for each feature separately, by
comparing the premixed target and noise energy at each T-
F unit. Even though the masks look strikingly similar for
all features, they do have some differences. The delta mask
for CRate64 D is defined in the same way as in [25]. A

2Note that Cooke et al. [13] use a binary mask called the a priori mask
based on whether the mixture energy is within 3 dB of the target energy,
corresponding to a local criterion of 7.7 dB instead of 0 dB. We experimented
with both the a priori mask and the IBM using a smaller development set of
240 utterances and found that the latter works better, and hence is used for
marginalization-based ASR.
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Feature Feature Domain Word
Accuracy

Cochleagram Spectral (non-linear frequency axis) 97.0
Rate64 Spectral (non-linear frequency axis) 93.2
CRate64 Spectral (non-linear frequency axis) 96.7
CRate64 D Spectral (non-linear frequency axis) 98.7
Spectrogram Spectral (linear frequency axis) 94.2
PLP Cepstral 99.2

TABLE I
WORD ACCURACIES OBTAINED USING THE CLEAN TEST SET OF THE

TIDIGITS CORPUS FOR VARIOUS FEATURES.

delta feature is considered reliable or unmasked if all the
static features used to calculate it are reliable, in accordance
with the IBM. The direct masking and reconstruction based
strategies use the IBMs corresponding to the cochleagram and
the spectrogram features.

The ASR module consists of 11 word-level HMMs, one
for each digit (1-9, ’oh’ and ’zero’) , a silence model, and
a short-pause model. Each word-level HMM consists of 8
emitting states, with the observation probability modeled as a
mixture of 10 diagonal Gaussian components [13], [23]. The
short-pause model has only 1 state, tied to the middle state of
the silence model. The HMMs are trained in clean conditions
using the HTK Toolkit [38]. Note that for marginalization-
based ASR, HMMs are trained for each of the 5 features,
whereas for the remaining two approaches they are trained
using PLP cepstral features. The HTK decoder is adapted to
perform bounded marginalization experiments. Additionally,
word insertion penalties for each of the features and each of
the methods are tuned separately using the development set of
240 test utterances.

1) Baseline Results: Before examining the performance of
the various methods for incorporating the IBM in ASR, we
first establish the baseline performance for each of the features
previously described. Table I shows the word accuracy ob-
tained in clean conditions. As expected, the best performance
is obtained using PLP features as they reside in the cepstral
domain as opposed to the other features that reside in the
spectral domain. The next best performance is obtained using
CRate64 D features. Rate64 performs the worst amongst the
features that are considered.

In order to test robustness to additive noise, clean speech
is mixed with three noise types from the NOISEX-92 corpus
[39] – car noise, babble noise and factory noise, at 6 SNR
conditions ranging from 20 dB to -5 dB, in decrements of
5 dB. Figures 2(a) – 2(c) show the word accuracy when
trained HMMs are directly used to recognize noisy speech.
Clearly, a marked deterioration in performance is observed for
all features as the SNR decreases. Again, the best performance
is obtained using PLP cepstral features. Notice that when
additive noise is stationary (car noise), PLP features perform
quite well, possibly because they are normalized and therefore,
less affected by such noise types. Notice that for the other two
noise types the decline in performance for the spectral features
is quick and pronounced. In fact, the performance of the PLP
features at 5dB is comparable to or better than every other
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(b) Babble noise
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(c) Factory noise

Fig. 2. Word accuracies in noisy conditions for 6 features and 6 SNR
conditions from 20 dB to -5dB, in decrements of 5 dB on TIDigits. Also shown
is the average word accuracy for each feature, across all SNR conditions. (a)
Car noise. (b) Babble noise. (c) Factory noise.

feature at greater SNRs.
2) IBM Results: Now that we have established the relevant

baselines for our features, we examine the performance of
the various methods for utilizing the IBM in ASR. Since
marginalization results can be significantly affected by the
feature used, we perform marginalization experiments using
each of the previously decribed features to determine the
best feature for comparison against other techniques. The
marginalization results using the 5 spectral features are shown
in Figures 3(a) – 3(c). Among the five features, CRate64 D
performs the best in most conditions, likely due to the addition
of the delta components. For babble noise at -5 dB, even
though CRate64 performs slightly better than CRate64 D, the
difference is not statistically significant at p = 0.05. At -5
dB the IBM is sparse and therefore, the delta mask is even
sparser. Since delta components are fully marginalized during
recognition, having a very sparse delta mask reduces the effect
of adding delta components to the feature. Both cochleagram
and CRate64 perform significantly better than Rate64 and
obtain similar word accuracies in most conditions. Note that
the rate of deterioration in performance with respect to SNR is
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(b) Babble noise
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Fig. 3. Marginalization results for five spectral features in noisy conditions
on TIDigits. Bounds are applied during marginalization in all the cases, except
for the delta components of CRate64 D feature. Also shown is the average
word accuracy across all SNR conditions. Note that the scale on the ordinate
does not start at 0.

lower for spectral features compared to the other features. But
the peak performance of spectrogram (in clean conditions) is
significantly lower than that of CRate64 D (see Table I). As
a result, only for factory noise at -5 dB does it perform better
than CRate64 D features. At high SNR conditions, it performs
even worse than Rate64 features.

Next, we compare marginaliziation with the other two
approaches—direct masking and reconstruction. The compar-
isons are presented in two parts, based on the domain in which
marginalization and target speech segregation/reconstruction
are performed. In the first part, they are performed using
spectrogram features with a linear frequency axis. The results
of this comparison are shown in Figures 4(a) – 4(c). In the
second part, they are performed in the non-linear frequency
domain. Since CRate64 D produced the best performance in
this domain, it is chosen to represent marginalization. The
corresponding results are shown in Figures 5(a) – 5(c).

As we can see from Figure 4, when using the linear
frequency domain, marginalization-based recognition performs
significantly worse than both of the other approaches in all
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(b) Babble noise
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Fig. 4. Comparison of marginalization, direct masking, and reconstruction
in the linear frequency domain on TIDigits. Marginalization uses spectral
features. The other two approaches use PLP cepstral features. Also shown
is the average word accuracy across all SNR conditions. (a) Car noise. (b)
Babble noise. (c) Factory noise. Note the scale of the ordinate.

test cases. The performance gap between the direct masking
approach and reconstruction is much closer. Only when the
SNR drops below 5dB on the two more difficult noise types,
babble and factory, does the direct masking approach begin
to outperform reconstruction. Since the IBM becomes very
sparse in those cases, it is likely that the reconstruction suffers
from the lack of reliable T-F units. It is unsurprising that
performance at high SNRs and for car noise is comparable
since baseline performance for PLP features in those cases
was already strong.

The trends are somewhat different when using the non-
linear frequency domain (see Figure 5). The most obvious
difference is the improvement seen for marginalization; in
many cases its performance is now comparable to the other
methods. Again, at low SNRs for the two more difficult noise
types, the direct masking approach still performs better than
reconstruction. However, in many cases the reconstruction
does slightly outperform the direct masking approach. Our
main point in comparing the two domains is to show that rel-
ative performance between direct masking and reconstruction
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(b) Babble noise
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Fig. 5. Comparison of marginalization, direct masking, and reconstruction
in the non-linear frequency domain on TIDigits. Also shown is the average
word accuracy across all SNR conditions. Note that the scale on the ordinate
does not start at 0.

is consistent. This allows us to connect these results to the
results in the next section which focus on the linear frequency
domain.

We would like to highlight a key point based on the results
from this dataset. At no condition do the results justify a
conclusion that the direct masking approach is not a viable
method for incorporating the IBM in ASR. None of the results
here provide strong evidence that the evaluated marginalization
or reconstruction techniques are significantly better than the
direct masking approach. In the next section we will examine
whether similar conclusions hold on a larger dataset.

B. AURORA4

Our experimental setup here is very similar to the one used
in the previous set of experiments. The Aurora4 [31] corpus
is a 5000-word closed vocabulary task. It was generated by
adding noise to clean speech recordings in the Wall Street
Journal (WSJ0) database [40]. Each utterance has been mixed
with a noise source at a randomly chosen SNR between 5 and
15dB. In total, six different noise types are used. Note that

Aurora4 does not allow for a breakdown by SNR as each test
set contains a mix of SNR conditions.

Using the HTK toolkit [38], we trained a baseline HMM
recognizer on clean speech. Our models consisted of tied-state
intra-word triphones with 16 Gaussians per state. The CMU
dictionary was used for our pronunciations. Cepstral mean and
variance normalized PLP features with delta and acceleration
coefficients were used, giving a 39-dimensional feature vector.
The reconstruction speech prior, consisting of a mixture of
1024 Gaussians, was also trained using the HTK. Again, the
IBM was generated by comparing the premixed clean speech
energy to the noise energy in the linear frequency domain us-
ing a local SNR threshold of 0dB. After masking, the signal is
converted back to the time domain before calculating features.
As noted earlier, similar results are obtained by calculating
features directly from the masked spectral representation as
shown in Table II.

We performed recognition experiments to compare the use
of masked and reconstructed speech.3 Our results utilizing
the IBM can be seen in Table III. Baseline refers to the
recognition of unsegregated noisy speech. As expected, the
addition of noise causes a significant drop in performance
compared to word accuracy when recognizing clean speech,
which is 91.7%. Reconstruction refers to speech where the
masked regions have been estimated utilizing the technique
described in Section III-B. When comparing these results to
the baseline, we see a significant improvement. This is the
type of comparison typically shown in the literature discussing
spectral reconstruction [23], [27], [29]. With such improve-
ments in accuracy over the baseline, it is easy to see how
claims about the utility of reconstruction can be made.

However, these two results alone do not tell the whole
story. Consider the direct masking results where no attempt
to reconstruct masked units has been made; performance is
better than reconstructed speech in every case. By attempting
to reconstruct the missing spectral energy, performance was
actually hindered. Combined with the results presented on
TIDigits, this highlights a major issue within the missing-
feature ASR literature. Without a comparison against the
direct masking approach, it is unclear whether a particular
reconstruction technique provides any benefit.

While our results show the direct masking approach signifi-
cantly outperforms this particular reconstruction technique, we
do not claim that the idea of reconstruction itself is ineffective.
More sophisticated techniques can potentially surpass the
simple direct masking approach. In Table III we also show
results for perfect reconstruction, where every missing T-F
unit has been replaced by the true energy of the clean speech.
If the reconstruction worked perfectly, it would significantly
outperform the direct masking approach.

As mentioned previously, the artificial zeros in the spectral
value could potentially have unknown effects depending on the
type of feature calculation software used. Instead of using a
value of 0 for the masked units, any value between 0 and 1 can
be substituted. Figure 6 presents results for a range of values.

3We did not perform marginalization-based experiments since the best
performing spectral feature performed worse on clean speech than the baseline
for any noise.
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System Car Babble Restaurant Street Airport Train Average

Time Domain 86.3% 86.4% 86.2% 85.7% 87.4% 86.2% 86.4%
Spectral Domain 85.7% 87.1% 87.0% 85.6% 86.2% 84.9% 86.1%

TABLE II
WORD ACCURACY RESULTS USING THE IBM ON THE AURORA4 TEST SET. TIME DOMAIN REFERS TO FEATURES CALCULATED AFTER CONVERTING THE

MASKED SIGNAL BACK TO THE TIME DOMAIN. SPECTRAL DOMAIN REFERS TO FEATURES CALCULATED DIRECTLY FROM THE MASKED SPECTRAL
REPRESENTATION.

System Car Babble Restaurant Street Airport Train Average

Baseline 72.7% 65.7% 63.3% 60.7% 65.0% 58.0% 64.2%
Reconstruction 84.3% 83.5% 84.1% 82.7% 84.5% 81.9% 83.5%
Direct Masking 86.3% 86.4% 86.2% 85.7% 87.4% 86.2% 86.4%
Perfect Reconstruction 90.2% 90.3% 90.2% 90.4% 90.7% 90.2% 90.3%

TABLE III
WORD ACCURACY RESULTS USING THE IBM ON THE AURORA4 TEST SET. BASELINE IS THE UNSEGREGATED NOISY SPEECH.
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Fig. 6. Word accuracy results averaged over all noise conditions on the
Aurora4 dataset. Results show the effect of manipulating the value for masked
units with the ideal binary mask.

Values near 0 produce nearly identical results, demonstrating
that a small value near 0 can be safely substituted without
decreasing performance. As the value used increases, perfor-
mance does decrease, but this is to be expected; more noise
energy is being included in the signal as the value increases.

We recognize that results using ideal masks may not tell
the whole story since estimated masks do contain errors. We
now examine the effects of mask errors on our results. We first
examine the effects of randomly perturbing the ideal mask and
then demonstrate results using estimated masks. To randomly
perturb the masks a T-F unit is randomly and independently
selected and its value is flipped; the process is repeated until a
certain percentage of energy in the flipped T-F units has been
reached. Obviously the errors introduced in this manner would
differ from the errors seen in a mask estimation algorithm, but
it does provide a general idea of the effect of mask errors and
has been used in previous studies [17], [23].

Results on the Aurora4 test set are shown in Figure 7.
Average word accuracy across all 6 noise types for both the
direct masking and reconstruction approaches versus energy
deviation are shown. Energy deviation is the ratio of energy
in the incorrectly labeled T-F units with respect to the total
target energy. We use this metric as opposed to a simple count
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Fig. 7. Word accuracy results on the Aurora4 test set using randomly
perturbed ideal binary masks. Average results over all 6 test conditions are
displayed. Results on all test conditions follow the same general pattern. The
results use an IBM where a given percentage of energy has been incorrectly
classified as speech or noise dominant.

of unit labeling errors because we expect errors in high energy
units to affect the final result more than those in low energy
regions. Our results show reconstruction begins to outperform
the direct masking approach at around 10% energy deviation
on average. However, by the time reconstruction becomes
the better performing metric, performance is similar to the
baseline.

For our estimated mask experiments, we use a simple mask
estimation technique. An estimate of noise and speech power
is used to calculate the instantaneous SNR. Given the SNR
estimate, a binary mask can be estimated. The noise estimate
uses a power spectral density estimator recently proposed by
Hendriks et al. [41] and the speech estimate comes from
the work of Erkelens et al. [42]. In working with estimated
masks, we learned that a small change to the direct masking
approach can produce large performance improvements. Since
the estimated mask contains errors, a less aggressive masking
approach seems appropriate. Instead of using a binary mask
with zeros for masked regions, any real value between 0 and
1 could be used. We found that a value of 0.5 performed
best on a development set for this mask estimation algorithm.
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System Car Babble Restaurant Street Airport Train Average

Baseline 72.7% 65.7% 63.3% 60.7% 65.0% 58.0% 64.2%
Reconstruction 78.6% 67.0% 62.7% 65.4% 65.3% 66.1% 67.5%
Direct Masking 77.4% 68.3% 64.9% 65.8% 65.2% 65.1% 67.8%

TABLE IV
WORD ACCURACY RESULTS USING ESTIMATED BINARY MASKS ON THE AURORA4 TEST SET. BASELINE IS THE UNSEGREGATED NOISY SPEECH.

While this can be viewed as similar to soft-mask approaches,
it still differs significantly; only a single uniform value is used
for all masked units as opposed to estimating a specific value
for each T-F unit. Results comparing the performance of the
direct masking and reconstruction approach using estimated
masks can be seen in Table IV. Both approaches provide a
modest, but significant improvement over the baseline. As
expected, based on our results using perturbed masks, there
is no significant difference between the two approaches since
the results are relatively close to the baseline. Figure 8 shows
the performance of direct masking using various values for the
masked regions. Performance is robust to a range of values and
values between 0.2 and 0.6 all perform well.

Results on ideal, estimated, and perturbed masks provide
evidence that the simple direct masking approach does not
perform significantly worse than reconstruction. In fact, just
a small reduction in energy deviation would produce a larger
increase in performance than perfect reconstruction would pro-
duce over the direct masking approach. Improvements to mask
estimation may provide greater performance improvements
compared to improvements to reconstruction methods.

The direct masking approach provides a stronger baseline
compared to unsegregated noisy speech for missing feature
ASR. We also believe this demonstrates that future work in
mask estimation can evaluate performance in ASR without
requiring more complicated reconstruction techniques. We
acknowledge that the reconstruction approach evaluated in
this study provides a relatively simple baseline. However, it
still requires training general speech models and implementing
the reconstruction technique. Direct masking operates without
additional work. In the next section we will explain why
our experiments showed, in contrast to previous results, that
directly using binary-masked speech can work well in ASR.

V. DIRECT MASKING AND VARIANCE NORMALIZATION

We have established that directly using the IBM can perform
well, but why has this not been previously reported? The
direct masking approach has been previously tested [17] and
results were poor. Other studies likely ignored this approach
based on these early results. If this is true, then what is
different between our experimental setup and the likely setup
of previous work? In our previous study [16], we found
correlation between language model strength and recognition
performance, suggesting that the Aurora results may have been
due to the influence of the language model. However, the
present study shows a similar effect for small vocabulary and
large vocabulary tasks, indicating that the language model may
not be a primary reason.
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Fig. 8. Word accuracy results averaged over all noise conditions on the
Aurora4 dataset. Results show the effect of manipulating the value for masked
units in an estimated mask.

The remaining difference is the features used. Due to its
popularity, previous work likely used MFCCs generated using
the HTK. As already mentioned, our experiments used PLP
features generated using the ICSI tool Feacalc [43]. In order to
test our hypothesis that the feature type could drastically affect
the results, we attempted to use the direct masking approach
with MFCC features. Results on the TIDigits data mixed with
factory noise are shown in Figure 9. Performance for other
noise types was similar. The direct masking approach using the
IBM clearly does not work. In fact, it performs worse than no
segregation at all. Obviously if previous researchers had seen
a similar result, it would have served as a strong motivator to
explore techniques for incorporating a binary mask in ASR.

Many differences exist between the two feature types,
but we found variance normalization was the only crucial
difference. Although HTK-based features typically do not use
variance normalization, HTK does provide this functionality.
To show the effects of variance normalization, we perform it
on the MFCC features and show the results in Figure 9. Each
dimension was normalized to have a unit variance per utter-
ance. Two things are immediately obvious when comparing the
results in Figure 9. First, variance normalization has improved
every result. Even recognition on the noisy speech directly is
significantly improved at lower SNRs. It appears the decreased
variance in the features caused by the interference in the signal
is a significant source of the performance degradation. Second,
the direct masking approach now performs remarkably well.
The benefits of using the IBM are only significant at lower
SNRs. The variance normalized cepstral features themselves
appear to be fairly robust in this small vocabulary domain.
Regardless, simple variance normalization allows the direct
use of the IBM to be a strong alternative to other techniques.
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Figure 10 presents the same experiments for Aurora4.
On the larger vocabulary dataset, the binary masked MFCC
features perform reasonably well even without variance nor-
malization. As opposed to the TIDigits results, in all cases the
binary masked features outperform the unenhanced features.
The strength of the language model in this dataset may allow
the recognizer to overcome the mismatch in the features. Even
though the unnormalized features see an improvement on the
Aurora4 dataset, variance normalization clearly provides a
large boost in performance.

We can examine the average variance of the first 13 cepstral
coefficients of the MFCC features used. Results are shown for
babble noise at 5dB SNR for the TIDigits data set in Figure 11.
The pattern is consistent across all noise types and SNRs. As
expected, variances for features generated from noisy speech
are less than features generated from clean speech. The noise
effectively fills in T-F units with low energy and decreases the
dynamic range of the clean speech. Variance normalization
is commonly used in robust ASR; Chen and Bilmes provide
a thorough analysis of the effects of normalization on noisy
speech in [44].

Figure 12 illustrates the effects of masking and variance
normalization on the noisy speech for the third cepstral coef-
ficient. In each plot, the noisy speech is shown versus clean
speech. The data has been binned in order to show the density
instead of the individual points. If the noisy speech matched
the clean speech perfectly, only the bins along the diagonal
marked by the black line would contain points. One can
consider matching this ideal line as a goal for enhancement.
The left subfigure shows that adding noise decreases the
variance of the data. Noisy speech features also lack a linear
relationship with clean speech. The middle subfigure shows
that masking increases the variance and improves the linear
relationship with clean speech, but the increased variance has
caused the plot to deviate from the ideal line. Finally, the right
subfigure demonstrates that variance normalization maintains
the linear relationship and also corrects the deviation. Similar
patterns are seen for other cepstral coefficients.

A more detailed look at the effects of variance normalization
on masked speech over all cepstral coefficients can be seen
in Figure 13. The top row uses unnormalized features and
the bottom row uses normalized features. The first column
contains features calculated from IBM masked noisy speech
and the second column contains features calculated from clean
speech. In each plot, the data has been binned into histograms.
When comparing the histograms of unnormalized clean speech
and masked speech, the differences in the 0th feature are the
most obvious. This is to be expected as both the addition
of noise and the masking significantly change the amount of
energy in any frame. Differences in other features are also
more prominent than those seen in the normalized features. For
the final column, the root mean square (RMS) distance of the
corresponding points for each coefficient is shown. This plot
uses the actual values for the features and is not a comparison
of the histograms. The RMS plot clearly demonstrates that
variance normalization significantly reduces the difference
between masked and clean speech features, especially for
lower order cepstral coefficients. We should note that, although
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Fig. 9. Word accuracies for the factory noise condition on TiDigits for
MFCCs with and without variance normalization and with and without the
IBM. Results are shown for 6 SNR conditions from 20 dB to -5dB, in
decrements of 5 dB. Also shown is the average word accuracy across all
SNR conditions.
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Fig. 10. Word accuracies for the Aurora4 dataset for MFCCs with and
without variance normalization and with and without the IBM.

Figure 13 examines the 5 dB case, similar observations hold
for other SNRs.

VI. CONCLUSION

We have shown the commonly held belief that a binary
mask cannot be used directly in ASR is incorrect. In fact,
directly using the IBM performs comparably to previously
proposed missing data methods on a variety of datasets.
Previous work likely missed this result due to the lack of
variance normalization on acoustic features. By controlling
the variance of the features, even results on the unsegregated
noisy speech improved. Since the increase in variance appears
to be a major issue, similar ASR systems should include
variance normalization. We also demonstrated that nonzero
mask values can significantly improve the performance of the
direct masking approach when utilizing estimated masks.

The direct masking approach requires no additional over-
head once a mask has been computed, and it is arguably the
easiest approach to using a binary mask for ASR. While we
certainly do not claim the direct masking approach should
replace all missing data methods, we believe it presents a
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Fig. 12. Each plot shows the mean subtracted 3rd cepstral coefficient. The noisy speech has been mixed with factory noise at 5 dB SNR. The black line
shows the plot of clean speech versus itself, illustrating the ideal relationship between enhanced speech and clean speech.
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Fig. 11. Variances for the first 13 MFCCs computed from speech mixed with
babble noise, clean speech, and IBM masked speech. The noise was mixed
with speech from TIDigits at an SNR of 5dB.

stronger baseline compared to unenhanced speech. Also, future
work in speech enhancement may be able to evaluate their
methods in terms of ASR performance without needing to
implement more complicated missing feature methods.
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