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Inter-Annotator Agreement Bottleneck Feature Network Types Introduction 

• We analyze our keyword spotting 
performance across 16 languages from the 
IARPA Babel program. 

• An open question from the Babel program is 
why so much variation exists between the 
performance of different languages. 

• We demonstrate that features of the 
keywords explain much of the variation in 
performance within a language. 

• This keyword-dependent variation must be 
taken into account when analyzing cross-
language performance. 

• The IARPA T&E team also provided inter-
annotator agreement  for four of the Babel 
languages. 

• The inter-annotator agreement shows a 
remarkable correlation with ATWV, 
suggesting that  the factors that make it 
difficult for a native speaker to consistently 
transcribe speech also impact ASR systems. 
 

Experimental Setup 

• We use the Sage speech recognition toolkit. 
• Sage combines BBN’s Byblos with open 

source toolkits such as Kaldi and CNTK. 
• Sage also includes a cross-toolkit FST 

recognizer that supports models built using 
the various component technologies. 

• All models are baseline monolingual DNN 
systems trained on 40 hours of transcribed 
speech. 

• Keyword spotting is performed using both 
whole word and fuzzy phonetic search. 

IARPA Babel Data 

• We use 16 FLP language packs:  Amharic, 
Cebuano, Dholuo, Georgian, Guarani, Igbo, 
Javanese, Kazakh, Kurdish, Lithuanian, 
Mongolian, Pashto, Swahili, Tamil, Telugu, 
and Tok Pisin* 

• Each language contains about 40 hours of 
transcribed data. 

• Lexicons are built using simple G2P rules. 
• Trigram language models are built using 

only the available transcribed training 
data. 

• While languages with lower WER tend to 
have higher ATWV, the relationship is not 
strong. 

• Pashto and Georgian have similar WER, but 
their ATWV is 20 points apart. 

• A similar relationship is seen with keyword 
confusability distance. 

• Keyword confusability distance is the 
average minimum Levenshtein distance for 
a keyword in each utterance, like a weighted 
keyword length. 

• ATWV performance within a language can 
vary more than performance across 
languages depending on the keywords 
chosen. 

• For all languages, as the length of the 
keywords increase, so does the ATWV. 

• Even accounting for these keyword features, 
large gaps in performance between 
languages are still seen. 

• ATWV is inversely proportional the number 
of occurrences  of each keyword. 

• This is partially due to the definition of 
ATWV—detections of rare words are worth 
more than common words. 

• Not only do these keyword features 
correlate with ATWV, but they all of the 
various features correlate with each other 
as well. 

• The IARPA Babel T&E team computed 
inter-annotator agreement for four 
languages. 

• The agreement correlates strongly with 
ATWV for our baseline systems. 

• The low-level agreement for some of the 
languages highlights the overall difficulty 
of the task. 

• As in the previous figures, there is a 
strong relationship between keyword 
confusability and ATWV for the four 
languages. 

• Overall, Lithuanian performs much better 
than the other languages. 

• Lithuanian is also the language with the 
highest inter-annotator agreement. 

• We can normalize the ATWV by the inter-
annotator agreement by subtracting the 
agreement from the ATWV. 

• The motivation is that performance can 
roughly only be as good as the level of 
inter-annotator agreement. 

• This brings the results much closer 
together, with no more than 10 points of 
variation between languages. 

• We have shown how the features of keywords can greatly impact the overall 
performance. 

• The variation in performance across languages also correlates with the level of 
inter-annotator agreement. 

• The factors that make it difficult for a native speaker to consistently transcribe 
speech also impact ASR systems. 
 
 


